post detail page top

Vibrant Technik

Terra – The Sustainability Pavilion, Dubai

By: Sarah Coogan, Inhabit Middle East, Dubai

Terra – The Sustainability Pavilion opened to the public in October 2021 as one of the top three attractions of the Expo 2020 Dubai. Designed by Grimshaw architects, the sustainability drivers for the pavilion were net zero energy and water. In Dubai’s harsh environment where summer temperatures can reach 50°C, shading was provided by a 130m wide main roof canopy and below ground accommodation. More than 6,000 sqm of monocrystalline photovoltaic cells are embedded in the canopy’s glass panels. These cells and the glass casing allow the pavilion to harness solar energy while providing shade and daylight to the occupants. At the centre of the pavilion, a courtyard provides a passively cooled space for visitors by using the prevailing cool breezes and blocking harsh winds.

Architectural Hardware at Terra Pavilion DubaiInhabit was appointed by façade contractor JML in September 2017 to carry out the structural design and engineering of all cable façades systems including the IGU glass and custom patch fittings. The Dubai team also provided construction support throughout to the main contractor, ASGC Group, and parametric design of the solar panel canopy for Premier Composite Technologies (PCT).

The project was completed at the end of 2019. The scope included the main internal courtyard and lobby entrances where the cable façade spanned over glazed vestibules. Inhabit was later appointed to design and engineer the jacking system for tensioning the cables, and site supervision during installation and testing. Our client was very happy with the outcome of the cable façade system and especially impressed with the innovative engineering design that helped deliver the project. It was a privilege to be part of such an iconic project with extremely complex engineering problems.

Cable Façade System Case Study

The cable façade system is made up of a pre-tension cable with varying cable diameter depending on the span and location of the cable, the pre-tensioned cable is fixed back to the concrete substructure by means of a duplex stainless-steel bracket The following requirements had to be considered in the design and engineering process to deliver a system that met our client’s vision:

Architectural requirements
Building maintenance requirements
Building movement and cable differential deflection
Load case consideration
Structural analysis of cables
Staging of jacking process

Architectural

Glass Hardware at Terra Pavilion DubaiIn both elevation and plan the façade is curved, increasing the complexity of design and building movement as the cables were different in length and diameter. The difference in length would cause issues with differential deflections between cables. The architect specified a cable system that was jacket (tensioned) through the base bracket, which significantly increased the difficulty of installation compared to the more typical method of tensioning through a turnbuckle system. The architectural intent resulted in a more elegant and ecstatically pleasing system as the cable is uninterrupted and disappears into the floor and soffit.

Building Maintenance Requirement

Over time the tension in the cable reduces due to external factors such as building movement, thermal expansion, and creep. The client requested no re-tensioning of the system to be done for 25 years. Our analysis allowed for this by considering the amount of building movement, creep, and thermal expansion for the specified period. The cables were pre-tensioned during the manufacturing phase to limit the amount of strain during the in-service life and advise on expected strain values based on historic test data.

Arguably the most important factor to consider is the building movement. Inhabit carried out a comprehensive building movement assessment liaising with the structural engineer to understand exactly how the supporting concrete structure will behave once the large tension loads are applied to the cable.

Terra – The Sustainability Pavilion, Dubai
Image Credit: ALES VYSLOUZIL

The following information was requested from the structural engineer:

Short-term creep
Long-term creep
Superimposed dead load
Superimposed live load
Column shortening

Terra The Sustainable Pavilion Dubai
Image Credit: ALES VYSLOUZIL

This was an iterative process as the amount of building movement was directly related to the cable tensioning and vice versa. The engineers had to consider the differential deflection of the cables due to a difference in cable length and diameter (cable diameter is smaller where spans were smaller). This is a very important aspect as the insulated glass unit was limited in the amount by the amount of warp it could experience.

Glass Architectural HardwareLoad Case Considerations

Typically, one would look at the dead load, wind load, imposed live load, imposed dead load, and seismic load when doing the structural analysis for a façade system. The system would be designed in such a way that the expected building movement and thermal expansion are accommodated in the connections so that it does not affect the structural integrity of the façade system. With cable façades, the structural analysis must consider the effect of building movement and thermal expansion as it reduces the tension force within the cable and therefore the capacity of the system. For this reason, all load cases also considered building movement and thermal expansion.

Structural Analysis of Cables

Inhabit carried out a comprehensive structural analysis of the full cable façade using Strand 7 finite element analysis software by means of non-linear analysis. The software allowed the Inhabit to make the following modifications which assisted in the accuracy of the analysis:

Modify the cable mechanical properties to match the suppliers’ test data
Apply a pre-tension load to the model simulating actual loading conditions
Move the top connection point of the cable simulating building movement

Glass Architectural HardwareThe following output parameters were used to assess and confirm the suitability of the cable diameter and pre-tension setting:

Stress output of each cable;
Global deflection of each cable;
Differential deflection between 2 adjacent cables, to further analyse the warp of each IGU

The structural calculations were prepared in a professional report and submitted to a third-party façade consultant for review and approval before fabrication could commence.

FACT FILE
PROJECT NAME: Terra – The Sustainability Pavilion
LOCATION: Dubai, United Arab Emirates
CLIENT: JML Façades + ASGC Group + Premier Composite Technologies
ARCHITECT: Grimshaw
Commencement Date: Completion Date 2017-2019

Sarah Coogan, Inhabit Middle East, Dubai

Regional Director

Sarah Coogan, has worked on several landmark projects across London, Dubai, and Australia and has been responsible for the façade delivery and management of a number of significant projects across different building typologies. In this capacity, she has worked on all facets of project development and has extensive knowledge of a wide range of façade systems. Sarah brings a technical as well as an aesthetic consultative ability to the Inhabit Dubai team, where she leads the consulting and project delivery for a number of Inhabit’s clients. Her key leadership role in interfacing with design and construction teams allows the expression of her keen interest and appreciation of architectural design. She enjoys working with designers to resolve complex geometries and develop systems that articulate their design.

home page below category

Related Stories

Leave a Reply

Your email address will not be published.